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S U M M A R Y  
In this paper we have derived numerical methods of order O(h 4) and O(h 6) for the solution of a fourth-order 
ordinary differential equation by finite differences. A method of O(h 2) was earlier discussed by Usmani and 
Marsden [6]. Convergence of the fourth-order method is shown. Two examples are computed to show the 
superiority of our methods. 

1. Introduction 

Consider the boundary value problem 

yiV + f ( x ) y ( x )  = 9(x),  f ( x )  >_ O, x ~ [a, b] (1) 

subject to the conditions 

y(a) = ~1, y(b)  = e2; y"(a) = ,81, y"(b) = ,82. (2) 

A particular case of this differential equation gives rise to the problem of bending of a 
uniformly loaded rectangular plate supported over the entire surface by an elastic foun- 
dation and supported rigidly along the edges [-5, p. 30]. Problems of this type often occur in 
plate deflection theory. The analytical solution of (1)-(2) for all f ( x )  and 9(x)  cannot always 
be found. Hence in such situations we have to make use of numerical methods and obtain an 
approximation to the solution which ensures a desired accuracy. One such method is the 
one based on finite differences by which the values of y are approximated over a finite set of 
grid points x, ~ [a, b]. Techniques of this type for the solution of ordinary differential 
equations have been developed by many authors [2, 3, 7]. Recently Usmani and Marsden 
[6] devised a difference scheme which gave a method of order two for the solution of the 
problem (1)-(2). 

In this paper we have obtained two methods--one of order four and the other of order 
six--making use of quadrature. We have also solved two examples to illustrate the 
superiority of these methods in the solution of problems of the type (1)-(2). 
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2.  D i f f e r e n c e  s c h e m e  

We divide the interval [a, b] into a finite set of grid points x ,  = a + nh, n = 0(1)N, where 
N h  = b - a and denote by y, the approximation to the value of y (x )  at x = x,. 

Consider the identity 

~4y(x , )  -- ~ - [ ~ ,  (x,+ 2 -- t)a[yiV(t) + yiV(Zx, -- t ) ]d t  

iv - 4 (x.+~ - t)a[yiV(t) + y (2x n - t)] dt, n = 2(1)N - 2. (3) 
n 

By using the transformations t -- xn + h(1 + u) in the first integral and t -- x. + (h/2)(1 
+ u) in the second integral on the right-hand side, (3) can be changed into 

~4Y(X") -- 6 -  - 1 ( l - u )  3 y lV[x . -h (1  + u ) ] + y  [ x . + h ( 1  + u ) ]  

- � 8 8  i J ~ y  LX.+~-(lh + u ) l } d u "  (4) 

With the aid of suitable weight functions w(u), [4], the integral on the right-hand side of 
(4) can be evaluated as 

iv iv iv iv 
Woy ~ + w~[y,_~ + Y,+I] + Wz[Y,-2 + Y,+2] 

p 
+ ~-~, iv iv 1 iv 1 . i v  ] 

Wr~[Yn_r, "k- Yn+r, -- gYn-r,/2 -- ~Y,+r~/Z -b E, (5) 
i = 1  

w h e r e -  2 < r i < 2 are the abcissae; w o, w~, w 2 and wr~ are the weights and E is the error of 
the quadrature rule used. The resulting algorithm is 

4- iv W [- iv iv iv . iv ] 
c~4yn = h {WoY n + 1LYn-1 "~ Yn+l] -'~ w2[Yn-2 "~ Yn+2 

p 
+ Z iv iv 1,,iv 1 . i v  ] )  

Wri[Yn_ri _3ff Yn+rl --  4Yn-rt/2 -- 4Yn+rl/2 f" (6) 
i = l  

Thus we see that we can have an algorithm for every choice of the quadrature rule and for 
every set of parameters selected in the right hand side of (6). 

i) If we choose w o = 1 and w~ = 0 = w E = w., for all i, we get the scheme 

-4 iv 2(1)N 2, (7) 6~y,  = n y , ,  n = - 

used by Usmani and Marsden [6] for developing a second-order method. 
ii) If w 2 = 0 = w~ for all i, we obtain the unique fourth-order scheme 

h 4 
iv 2(1)N 2 (8) t~4yn = ~ -  [yinV_ 1 d- 4y~ + y, + 1], n = - -  
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with t runcat ion  error- (1/720)hSy(S)(x . )  + . . . .  This scheme is unique because any formula  

involving an off-step point  can ul t imately be reduced to (8), for 

iv iv = 2(1 -- 2~ iv 2 r . . i v  iv Y.-~ + Y.+r r )Yn + r I-Yn-1 + Y.+a] + O(h4)" (9) 

iii) If  we take wr~ = 0 for all i in the a lgor i thm (6), we get the unique sixth-order  scheme 

_ h  4 
iv iv iv iv - 474y. ], 2(1)m 2. (10) c~*y. 720  [(yinV-2 + Yn+2) - -  124(y.-1 + f in+l )  - n = - 

As in (ii) above, we m a y  state here that,  since 

(r 2 -  1)(r 2 - 4 )  iv r 2 ( 4 - r 2 )  iv iv 
Y. + [Y. + Y.+I]  

iv iv 
Y.-r  + Y.+r = 2 3 

r 2(r  2 - -  1) [ .  iv iv 
+ 12 Yn-2 + Yn+2] + O(h6) ,  (11) 

any a lgor i thm of order  six depending on off-step points  can be reduced to (10), so that  (10) is 

the only scheme of order  six depending on five consecutive mesh points. 
We note  that  the system (8) gives us N - 3 equat ions for the N - 1 unknowns  Yi, 

i = I (1)N - 1. F r o m  the b o u n d a r y  condit ions we can get two more  relations 

h* r28 iv 245y]V 56y~V+y~V] 5Yl - ' 4 y 2  + Y3 = 2cq - h2fll + ~ [ Yo + + (12) 

and 

YN- 3 - -  4YN- 2 + 5YN- 1 

h 4 
= 2e2 - h2f12 + ~ [Y~-3 + 56y~-2 + 245y~_a + 28y~]. (13) 

Therefore,  the equat ions (12), (8) and (13) form our  me thod  of order  four. The equat ion 
(10) is of  sixth order  and to retain the band  width of the coefficient matr ix  A as five, we use 
the equat ions (12) and (13) for n = 1 and N - 1 respectively. The  t runcat ion  error  made  in 
these two equat ions is of order  O(h4).  However ,  numerical  results suggest that  the me thod  

behaves  like a me thod  of sixth order,  since the O(h 4) term in the error  E will have a small 

coefficient. 
Let  Y = (y.)r, n = I (1)N - 1. F r o m  the equat ion (1) we get 

y~ = - f . y .  + g., n = 0(1)N, (14) 

where f .  = f ( x . )  and g. = g(x.). If  we substitute for y~ f rom (14) in the equat ions (12), (8) 
and (13), the system of equat ions  can be writ ten in matr ix  form as 

A Y =  R (15) 
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where A is a five-band matr ix  such tha t  

h 4 
7h4r = 1 + - ~ f 3  a 1 2 =  - 4 + ~  J2, a13 

aN_I,N_ 2 --4 * 7--h4C h4 
= - 45 JN-2, aN_l ,u_  3 = 1 + 3~-0-fu_3, 

49/44(- 5 + ~-,o j~, i = j = l , N - 1 ,  
2h4/" 6 + 3  Ji, i = j = 2 , 3 , . . . , N - 2 ,  

h 4 
- 4  + ~ - f ~ _ ~ ,  i - j = l ,  i =  2 , 3 , . . . , N -  2, 

aij = 
h 4 

- 4 + - 6 - f ~ + ~ ,  j - i = l ,  i = 2 , 3 , . . . , N - 2 ,  

1, I i - j l  = 2, i # l ,  N - l ,  

O, li - jl > 2, 

and R is a co lumn vector  given by 

h 4 
= (2 - 7h4fo)~ 1 - h2fll + ~ [2890 + 24591 + 5692 + g3], r I 

h 4 
r2 = ~ -  [gl  + 492 + 93] - ~1, 

h 4 
r, = ~ -  [9~_1 + 4g~ + 9~+~], i = 3 ( 1 ) N -  3, 

h 4 
rN-2  = - ~ -  [9N-3  + 49N-2 + 9N-1]  -- 62, 

rN-1 = (2 - ~oh4fN)~2 -- h2f12 

h 4 
+ 3 ~ - [ 9 u - 3  + 56gN-2 + 245gN-t  + 289N]. 

N o w  yi, i -- 1(1)N - 1 can be solved easily f rom the set of equat ions (15) mak ing  use of the 
a lgor i thm [1] for the solution of a f ive-diagonal system. Similarly, the system of equat ions 
for the sixth-order me thod  can be obtained. 

3. Convergence of the method 

We now prove  the convergence of the four th-order  scheme. The  error  equat ion  of the 
four th-order  scheme is given by 

AE = T, (16) 
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where E is the error vector and T is the truncation-error vector of the equations given by 

[tl[ <_ O.O02183hSMs, 

241 
]ti[ <_ ~ hSM8 ' 

i = 2 ( 1 ) N  - 2,  

i =  1, N - l ,  
(17) 

where 

M .  = M a x  [ f f ) ( x ) l .  
[a, b] 

For  proving the convergence of the method we need to show that the matrix A is 
monotone. Let 

P = 

- 2 - 1  

- 1  2 - 1  

- 1  2 - 1  

- 1  2 - 1  
_ - 1  2 _  

, A o =  

- 5 - 4  1 

- 4  6 - 4  1 

1 - 4  6 - 4  1 

+1  - 4  + 6  - 4  
_ 1 - 4  5 _  

B= 

- -  4 9  7 i 
72 45  360  

1 2 2 
6 3 6 

2 2 1 
6 3 6 

2 2 i 
6 3 6 

1 7 49  
360  45  72 _ 

and D 1 = h 4 diag _(fl ,f2,. . . ,fN-1). Then A 0 = p2 and 

A = A o + BD 1 = p2 + D, (18) 

where D = BDi. Since f (x)  > 0 for x ~ [a, b], we have D > 0 and hence A > A o. 
Following Usmani  and Marsden [6], we have 

p2A-1  = [I - DP-Z][I  + (DP-Z) 2 + (DP-2)  * + . . . ] .  (19) 

Let /3 be obtained from D by replacing f ,  by fM = maxf(x) ,  so that D = hgfMB. By 
[a, b] 

Gershgorin's theorem all the eigenvalues of B lie inside the circle [ R -  ~1 = ~. Obviously 
p(B) _< 1. Hence 

p(D) = h4fMp(B) ~_ h4fM and p(p-1)  c_- 

Therefore, 

N 2 

8 

P( DP-2) N p(D)p( P-z) <- P(D)pz( P t) <-~4rh j~N . 
64 
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Hence the series (19) will be convergent  if 

64 
fM < (b - a) 4" (20) 

The matr ix  P is m o n o t o n e  [3], and hence A o = p 2  is also monotone .  Now,  if 

p - 2  > p - 2 / ~ p - 2 ,  (21) 

then G = p - 2  p-ZOp-2 is a positive matr ix  and hence A - 1 =  GM, where M = 1 + a 

positive matrix,  will also be positive. Let B = B + C, where 

-23, i = j =  l, 2 , . . . , N - 1 ,  
bij = +, I i - j [  = 1, 

0, l i -  Jr > 1, 

- - - 1 

C l l  = C N - 1 , N - 1  ~ 7~ C12 ~ C N - 1 , N - 2  -- 90~ 

C13 = C N - 1 , N - 3  -- 310 a n d  cij = 0 o therwise .  

Let p - 2  = (a*), p - 2 B p - z  = (b*) and p - 2 C p - 2  = (c*). We know that  ([6]) 

I 1 i2 +j2] i<_j ,  
i ( N 6 J )  2J + N N ' 

1 i 2 q_ j2 ] 
j ( N -  i) 2 i+ i >_j. 

6 N N ' 

We also find that  (b*) is symmetric:  

N-1 N-2 N-1 
b* = ~ ~. ,,* a* a'a* a'a* i > j, 

k=i  k=l  k=2 

and 

a* 
c* - a*l (5a*j - 4a~j + a~;) + ~oiN-1 Ca* . -  4a} 2 �9 + 5a}-1,;) .  

360 360 ~ N-3,j - ,j 

Substituting a* f rom above and simplifying, we get 

a*l a 'N-1 and c* = 0 otherwise. 
c'1 = 36-0-' c ' N - 1 -  360 

Hence, c* >__ 0. 
F r o m  (21) we deduce that  A will be m o n o t o n e  if 

a* >_ h'fM(b* + c*) 
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or, 

a* < a* (22) 
f~  <- h4(b * + c*) - h4b * '  

since c* >_ 0. Hence  f rom (20) and (22), we conclude that  A is m o n o t o n e  if 

I a*" 64 1 Min 4': , (23) fM < h b* ( b - a )  4 " 

F r o m  the equat ion (18), we have [IEl[ < A-111rl[. Since the matr ices A and A 0 are bo th  
m o n o t o n e  and A > Ao, it follows f rom the theory  of m o n o t o n e  matr ices ([3]) tha t  

A -1 < Ao 1, so that  (see[6]) 

Ilgll < Aolllrll, 

N- 1 241 N- 1 241 
lell < max  It~,l E a* < hSM8 E a* < h4M8(b - a) 4. (24) 

k j= 1 - -  60480 j= 1 - 3870720 

Hence, 

IIEII : O(h 4) ~ 0 as h --, 0, 

which proves  the convergence of the me thod  and tha t  its order  is four. We now summar ize  

the above in the following theorem:  

THEOREM. Let y(x) be the exact solution of the boundary values problem (1)-(2) and let y,, 
n = I (1)N - 1 be the exact solution of the system (15). I f E  is 9iven by (16) andf(x) satis- 
fies (23), tlEII = O(h 4) and satisfies (24), the round-off error bein9 neglected. 

4. N u m e r i c a l  results  

We have used bo th  the fourth- and s ixth-order  methods  for the solution of the following two 

problems [6]. 

i) y i V + 4 y = l ,  

with the bounda ry  condit ions y(_+ 1) = y " ( +  1) = 0. 
The exact solution is 

y ( x ) =  0 . 2 5 { 1 - 2  (sin l s inhls inxs inhx+cos lcoshlcosxcoshx)}cos  2 + cosh 2 - 

ii) yiv q_ xy = - ( 8  + 7x + x3)e x 

with y(0) = y(1) = 0 and y"(O) = 0, y"(1) = - 4 e .  
The  exact solution in this case is y(x) = x(1 - x)e  x. 
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TABLE 1 

Max IE[ in the solutions of the fourth-order equations for h = 2-", m = 2(1)7 

Fourth-order method Sixth-order method Second-order method [6] 

Variable Constant Variable Constant Variable Constant 
m coefficients coefficients coefficients coefficients coefficients coefficients 

Problem ( i i )  Problem (i) Problem ( i i )  Problem (i) Problem (ii) Problem (i) 

2 0.1459(-4) 0.3906(-6) 0.1164(-4) 0.3110(-6) 0.7160(-2) 0.1289(-2) 
3 0.5486(-6) 0.1466(-7) 0.1913(-6) 0.5073(-8) 0.1744(-2) 0.3215(-3) 
4 0.2829(-7) 0.7569(-9) 0.3117(-8) 0.8167(-10) 0.4330(-3) 0.8031(-4) 
5 0.1671(-8) 0.4472(-10) 0.4983(-10) 0.1302(-11) 0.1081(-3) 0.2007(-4) 
6 0.1029(-9) 0.2755(-11) 0.7918(-12) 0.2136(-13) 0.2703(-4) 0.5018(-5) 
7 0.6458(-11) 0.1850(-12) 0.6588(-13) 0.1145(-13) 0.6756(-5) - -  

We note that the solution of (i) is an even function and we integrated the first problem over 
the interval [0, 1] with step lengths h = 2-",  m = 2(1)7 and the maximum absolute errors in 
each case are given in Table 1. Problem (ii) is solved from x = 0 to x = 1 with the same step 
lengths and the maximum absolute errors are also recorded in Table 1. The computations 
are performed in double precision. 

From the table we note that, as expected, the errors produced by the sixth-order formula 
are smaller than the errors in the fourth-order formula. The results produced by both these 
methods are superior to the second-order method of Usmani  and Marsden [6]. It is further 
verified from the table that on reducing the step size from h to hi2, the maximum absolute 
error is approximately reduced by ~6 in the case of  the fourth-order method and ~4 in the 
case of  the sixth-order method. 
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